Electrical Engineering MCQ Question Papers: Campus Placement

Subject: Numerical Methods and Computer Programming 3

**Part 3: List for questions and answers of Numerical Methods & Computer Programming**

** **

**Q1. Which of the following equations is an exact DE?**

**a) (x^2 + 1) dx – xy dy = 0**

**b) x dy + (3x – 2y) dx = 0**

**c) 2xy dx + (2 + x^2) dy = 0**

**d) x^2.y dy – y dx = 0**

** **

**Q2. Which of the following equations is a variable separable DE?**

**a) (x + x^2 y) dy = (2x + xy^2) dx**

**b) (x + y) dx – 2y dy = 0**

**c) 2y dx = (x^2 + 1) dy**

**d) y^2 dx + (2x – 3y) dy = 0**

** **

**Q3. The equation y^2 = cx is general solution of:**

**a) y’ = 2y / x**

**b) y’ = 2x / y**

**c) y’ = y / 2x**

**d) y’ = x / 2y**

** **

**Q4. Solve the differential equation: x(y – 1) dx + (x + 1) dy = 0. If y = 2 when x = 1**

**a) 1.80**

**b) 1.48**

**c) 1.55**

**d) 1.63**

** **

**Q5. If dy = x^2 dx; what is the equation of y in terms of x if the curve passes through (1, 1)**

**a) x^2 – 3y + 3 = 0**

**b) x^3 – 3y + 2 = 0**

**c) x^3 + 3y^2 + 2 = 0**

**d) 2y + x^3 + 2 = 0**

** **

**Q6. Find the equation of the curve at every point of which the tangent line has a slope of 2x**

**a) x = -y^2 + C**

**b) y = -x^2 + C**

**c) y = x^2 + C**

**d) x = y^2 + C **

** **

**Q7. Solve (cox x cos y – cotx) dx – sin x sin y dy = 0**

**a) sin x cos y = ln (c cos x)**

**b) sin x cos y = ln (c sin x)**

**c) sin x cos y = -ln (c sin x)**

**d) sin x cos y = -ln (c cos x)**

** **

**Q8. Solve the differential equation dy – x dx = 0, if the curve passes through (1, 0)?**

**a) 3x^2 + 2y – 3 = 0**

**b) 2y^2 + x^2 – 1 = 0**

**c) x^2 – 2y – 1 = 0**

**d) 2x^2 + 2y – 2 = 0**

** **

**Q9. What is the solution of the first order differential equation y(k + 1) = y(k) + 5**

**a) y(k) = 4 – 5/k**

**b) y(k) = 20 + 5k**

**c) y(k) = C – k, where C is constant**

**d) The solution is non-existence for real values of y**

** **

**Q10 .Solve (y – root of (x^2 + y^2)) dx – x dy = 0**

**a) Root of(x^2 + y^2 ) + y = C**

**b) root of(x^2 + y^2 + y) = C**

**c) Root of(x + y) + y = C**

**d) root of(x^2 – y) + y = C**

** **

**Q11. Find the differential equation whose general solution is y = C1x + C2ex**

**a) (x – 1) y” – xy’ + y = 0**

**b) (x + 1) y” – xy + y = 0**

**c) (x – 1) y” + xy’ + y = 0**

**d) (x + 1) y” + xy’ + y = 0**

** **

**Q12. Find the general solution of y’ = y sec x**

**a) y = C (sec x + tan x)**

**b) y = C (sec x – tan x)**

**c) y = C (sec x tan x)**

**d) y = C (sec2 x + tan x)**

** **

**Q13. Find the differential equations of the family of lines passing through the origin**

**a) y dx – x dy = 0**

**b) x dy – y dx = 0**

**c) x dx + y dy = 0**

**d) y dx + x dy = 0 **

** **

**Q14. What is the differentia equation of the family of parabolas having their vertices at the ****origin and their foci on the x-axis**

**a) 2x dy – y dx = 0**

**b) x dy + y dx = 0**

**c) 2y dx – x dy = 0**

**d) dy / dx – x = 0**

** **

**Q15. Determine the differential equation of the family of lines passing through (h, k)**

**a) (y – k) dx – (x – h) dy = 0**

**b) (y – h) + (y – k) = dy / dx**

**c) (x – h) dx – (y – k) dy = 0**

**d) (x + h) dx – (y – k) dy = 0**

** **

**Q16. Determine the differential equation of the family of circles with center on the y-axis**

**a) (y”)3 – xy” + y’ = 0**

**b) y” – xyy” + y’ = 0**

**c) xy” – (y’)3 – y’ = 0**

**d) (y’)3 + (y”)2 + xy = 0**

** **

**Q17. Radium decomposes at a rate proportional to the amount at any instant. In 100 years, ****100 mg of radium decomposes to 96 mg. How many mg will be left after 100 years?**

**a) 88.60**

**b) 95.32**

**c) 92.16**

**d) 90.72**

** **

**Q18. The population of a country doubles in 50 years. How many years will it be five times as ****much? Assume that the rate of increase is proportional to the number inhabitants**

**a) 100 years**

**b) 116 years**

**c) 120 years**

**d) 98 years**

** **

**Q19. Radium decomposes at a rate proportional to the amount present. If the half of the ****original amount disappears after 1000 years, what is the percentage lost in 100 years?**

**a) 6.70%**

**b) 4.50%**

**c) 5.35%**

**d) 4.30% **

** **

**Q20. A nominal interest of 3% compounded continuously is given on the account. What is ****accumulated amount of P10,000 after 10 years**

**a) P13,620.10**

**b) P13,500.10**

**c) P13,650.20**

**d) P13,498.60 **

** **

**Part 3: List for questions and answers of Numerical Methods & Computer Programming**

** **

**Q1. Answer: c**

** **

**Q2. Answer: c**

** **

**Q3. Answer: c**

** **

**Q4. Answer: c**

** **

**Q5. Answer: b**

** **

**Q6. Answer: c**

** **

**Q7. Answer: b**

** **

**Q8. Answer: c**

** **

**Q9. Answer: b**

** **

**Q10. Answer: a**

** **

**Q11. Answer: a**

** **

**Q12. Answer: a**

** **

**Q13. Answer: b**

** **

**Q14. Answer: a**

** **

**Q15. Answer: a**

** **

**Q16. Answer: c**

** **

**Q17. Answer: c**

** **

**Q18. Answer: b**

** **

**Q19. Answer: a**

** **

**Q20. Answer: d**